文章编号: 0258-7025(2009)07-1831-04

高功率激光二极管端面抽运重复频率 Yb:YAG 激光器

蒋东镔 段文涛 徐美健 蒋新颖 於海武 李明中 (中国工程物理研究院激光聚变研究中心,四川 绵阳 621900)

摘要 采用 940 nm InGaAs 激光二极管(LD)阵列端面抽运片状 Yb: YAG 晶体,谐振腔采用 V 形有源镜构型,实现了 1030 nm 红外激光输出。实验中分别测试了激光器在不同重复频率(1 Hz,2 Hz,5 Hz,10 Hz)条件下的激光输出特性。当输出耦合镜的反射率为 73%,在抽运能量为 7.6 J(功率密度为 13 kW/cm²)时,1 Hz 重复频率输出稳定运行于 2.43 J,光-光转换效率为 32%,斜率效率为 54.5%;10 Hz 重复频率输出稳定运行于 1.76 J,光-光转换效率为 23.2%,斜率效率为 43.3%。

关键词 激光器; Yb: YAG 晶体; 激光二极管阵列; 端面抽运; 重复频率 中图分类号 TN248.1 **文献标识码** A **doi**: 10.3788/CJL20093607.1831

High-Power Laser Diode End-Pumped Yb : YAG Repeat Frequency Laser

Jiang Dongbin Duan Wentao Xu Meijian Jiang Xinying Yu Haiwu Li Mingzhong (Research Center of Laser Fusion, China Academy of Engineering Physics,

Mianyang, Sichuan 621900, China)

Abstract A 940 nm InGaAs laser diode (LD) array end-pumped Yb : YAG disk laser has been demonstrated, chosing V-shape stable resonator with active-mirror configuration. The infrared laser output at 1030 nm is obtained. The output performance of the laser under different repeat frequencies (1 Hz, 2 Hz, 5 Hz, 10 Hz) is experimentally tested. With output mirror reflectivity of 73% and pump energy of 7.6 J (power of 13 kW/cm²), the output energy of 2.43 J is obtained with repeat frequency of 1 Hz, the optical-optical efficiency is 32% and the slope efficiency is 54.5%; the output energy of 1.76 J is obtained with repeat frequency of 10 Hz, the optical-optical efficiency is 23.2% and the slope efficiency is 43.3%.

Key words lasers, Yb : YAG crystal; laser diode array; end pump; repeat frequency

1 引

言

激光二极管(LD)抽运的固体激光器(DPSSL) 因具有高效率、高可靠性以及 LD 抽运源的长寿命 等优点,正成为新一代固体激光器的主角。随着 LD 阵列输出功率的不断提高,需要高抽运强度的 准三能级 Yb 激光介质受到了越来越多的重视,特 别是上世纪 90 年代初 LD 抽运的 Yb 激光器室温运 转以来,激光材料及器件的性能得到了广泛的研究。 由于 Yb 离子特有的两多重态能级特性(抽运和激 光跃迁发生于 Stark 子能级之间),不存在浓度猝 灭、激发态吸收、上能级转换等不利因素,同时,Yb 激光介质普遍具有毫秒级的荧光寿命、宽的吸收谱, 特别适合于功率受限的 LD 抽运^[1~3]。LD 抽运的 Yb 激光器大多运行于连续(CW)模式,或者高重复 频率方式^[4~7],鲜见于低重复频率(数十赫兹以内)、 长抽运脉宽的脉冲储能方式。目前基于 Yb 介质的 DPSSL,特别是大能量的脉冲储能装置同样得到了 世界各大实验室的重视^[8~11],主要目的在于发展重 复频率脉冲波(PW)系统的抽运源,以及惯性聚变 能源(IFE)激光驱动器的研究平台。

考虑到此 Yb: YAG 的 DPSSL 实验平台将作 为今后 100 J/10 Hz 的 DPSSL 级系统的前端,并作 为放大器构形的可行性研究平台,采用了 LD 阵列

收稿日期: 2008-09-01; 收到修改稿日期: 2008-10-16

作者简介:蒋东镔(1973-),男,助理研究员,主要从事高功率固体激光技术研究。E-mail: jiangdb@tom.com

光

正面抽运的方式,"V"型平凹稳定腔,介质掺杂原子数分数为10%,1.5 mm 厚。在不同工作频率与不同输出耦合镜的条件下,对 Yb:YAG 激光器的输出特性进行了实验研究。

2 实验装置

如图 1 和图 2 所示,整个实验装置由 LD 抽运 源、抽运耦合系统以及激光谐振腔组成。抽运源采 用德国 DILAS 公司的峰值功率为 12 kW(120 A 时)LD 阵列,工作中心波长为940 nm,抽运脉冲宽 度为1ms,谱线宽度为4.6nm;抽运耦合系统采用 空心导管型耦合系统,耦合效率大于 90%,该耦合 系统具有结构简单、耦合效率高、传输性能好等诸多 特点^[12];激光谐振腔采用"V"型有源镜(Active Mirror,AM)构形平凹稳定腔^[13,14],使用掺杂原子 数分数为10%,厚度为1.5 mm,口径为\$10 mm的 Yb: YAG 晶体片,正面抽运(抽运面积7 mm× 6 mm),背面水冷。激光介质前表面镀有对940 nm 和 1030 nm 增透(T>98%)的介质膜,背面镀有对 940 nm(R>96%)和 1030 nm 高反(R>99.8%)的 介质膜,介质背面镀 940 nm 高反射膜,是为了提高抽 运光的利用率。谐振腔的腔长为43 cm,后腔全反镜 (镀 1030 nm 高反膜)的曲率半径为 2 m,输出镜为镀 1030 nm 部分反射膜的平面镜。

图 1 激光器结构示意图 Fig. 1 Configuration of laser system

图 2 激光器实验装置图 Fig. 2 Experimental setup of laser system

3 实验结果及分析

1

首先对采用不同反射率的耦合输出镜时激光输 出特性进行研究。在输出耦合镜反射率为73%时, 输出激光能量为:1 Hz 工作时,激光能量输出为 2.43 J,斜率效率为54.5%;10 Hz 工作时,激光能 量输出为1.76 J,斜率效率为43.3%。此时 LD 阵 列工作电流为95 A,抽运峰值功率为7.6 kW,实际 耦合效率为90%,介质表面峰值抽运功率密度约为 13 kW/cm²。表1与图3为不同反射率输出耦合镜 时的输出能量及斜率效率。

表 1 不同反射率输出耦合镜时的输出能量、

斜率效率及光-光转换效率

 Table 1
 Output energy, slope efficiency and

 optical-optical efficiency of the laser

inder different reffectiviti	es
------------------------------	----

Reffectivities / %		82	73	60	41.5
Output energy	1 Hz	2.45	2.43	2.3	1.6
$E_{ m out}/{ m J}$	10 Hz	1.63	1.76	1.6	0.83
Slope efficiency	1 Hz	50.5	54.5	54.1	41.8
$\eta_{_{ m sl}}$ / $^{ m 0}\!\!\!/_{ m 0}$	10 Hz	29.3	43.3	37.6	23.9
Optical-optical efficienc	У1 Hz	32.2	32	30.3	21.1
$\eta_{ m o-o}$ / $\%$	10 Hz	21.4	23.2	21.1	10.9

图 3 输出耦合镜不同反射率时的斜率效率

Fig. 3 Output energy and slope efficiency of the laser under different output mirror reflectivity

其次,开展了不同工作频率下激光器输出特性的研究。研究了输出耦合镜反射率为82%时,不同工作频率下的激光输出特性。表2与图4为激光器 在不同工作频率下,介质表面峰值抽运功率密度约为13 kW/cm²时的激光输出特性:

表 2 不同工作频率时的激光输出特性

Table 2 Output performance of the laser under

different	repeat	frequency
-----------	--------	-----------

$Frequency \ / \ Hz$	1	2	5	10
Output energy $E_{ m out}/{ m J}$	2.45	2.29	2.13	1.63
Slope efficiency $\eta_{ m sl}$ / $\%$	50.5	46.8	42.2	29.3
Optical-optical efficiency $\eta_{_{\mathrm{o}-\mathrm{o}}}$ / %	32.2	30.1	28	21.4

在 LD 阵列输出峰值功率为 7.6 kW,介质表面的抽运功率密度约为 13 kW/cm²,实验表明当输出 耦合镜的反射率为 73%时,激光器输出效率最佳。 1 Hz 重复频率输出稳定运行于 2.43 J,光-光转换 效率为 32%,斜率效率为 54.5%;10 Hz 重复频率 输出稳定运行于 1.76 J,光-光转换效率为23.2%, 斜率效率为 43.3%。由实验数据可以看出,随着重 复频率的增加,激光输出能量随之下降,主要是由于 激光器在重复频率运转时,激光介质内的热功率密 度显著增大,影响了激光能量的输出。这是准三能 级 Yb 离子的共存特性,因此基于 Yb 材料的放大器 单元的高效热管理技术将是下一步工作的重点。

4 结 论

开展了低重复频率(1 Hz,2 Hz,5 Hz,10 Hz)、 长抽运脉宽的脉冲储能型 Yb: YAG 激光器输出特 性的研究。输出耦合镜的最佳反射率为 73%,在峰 值抽运功率为 7.6 kW(功率密度为 13 kW/cm²) 时,获得了在重复频率 1 Hz 和 10 Hz 时的输出能 量、光-光转换效率和斜率效率数据。在实验过程 中,激光二级管阵列输出并未达到满负荷状态,因 此,随着抽运功率的增加,激光器的输出能量还可进 一步得到增加。

参考文献

1 Yu Haiwu, Duan Wentao, Xu Meijian *et al.*. Review of ytterbium-doped laser materials [J]. Laser & Optoelectronics Progress, 2007, 44(5):30~41

於海武,段文涛,徐美健等. Yb激光材料综述[J]. 激光与光电 子学进展, 2007, 44(5): 30~41

- 2 Yu Haiwu, Xu Meijian, Duan Wentao et al.. Wavelength chirping of laser-diodes and optimization of diode-pumped solidstate lasers[J]. Acta Physica Sinica, 2007, 56(5):2559~2569 於海武,徐美健,段文涛等. LD 波长啁啾效应与二极管泵浦固 体激光器性能优化[J]. 物理学报, 2007,56(5): 2559~2569
- 3 Yu Haiwu, Xu Meijian, Duan Wentao *et al.*. Investigation on pumping dynamics and energy storage performances of Yb ions [J]. *Acta Physica Sinica*, 2007, **56**(7):4158~4168 於海武, 徐美健, 段文涛等. Yb 离子泵浦动力学及储能特性研究[J]. 物理学报,2007,**56**(7):4158~4168
- 4 Li Lei, Yang Suhui, Sun Wenfeng *et al.*. LD-pumped Yb: YAG chip laser with high beam quality[J]. *Chinese J. Lasers*, 2004, **31**(11):1285~1288

李 磊,杨苏辉,孙文峰等.激光二极管抽运的高光束质量的 Yb:YAG薄片激光器[J].中国激光,2004,31(11):1285~ 1288

- 5 Liu Qiang, Gong Mali, Li Chen *et al.*. Corner-pumped Yb: YAG lasers[J]. *Acta Physica Sinica*, 2005, **54**(2):721~725 柳 强, 巩马理, 李 晨等. 角抽运 Yb: YAG 激光器[J]. 物理 学报, 2005, **54**(2):721~725
- 6 Wu Haisheng, Yan Ping, Gong Mali *et al.*. QCW LD-pumped Yb: YAG microchip laser[J]. *Chinese J. Lasers*, 2003, **30**(2): 97~100

吴海生, 闫 平, 巩冯理等. 准连续激光二极管抽运的 Yb: YAG 微晶片激光器[J]. 中国激光, 2003, **30**(2):97~100

- 7 Chen Changshui, Zhang Qingli, Liu Weidong et al... ALL-solid thin disk Yb: YAG laser [J]. Chinese Journal of Quantum Electronics, 2003, 20(3):307~309 陈长水,张庆礼,刘蔚东等. 全固化薄盘 Yb: YAG 激光器研究 [J]. 量子电子学报,2003, 20(3):307~309
- 8 A. Bayramian. High average power laser program workshop [C]. Rochester NY,2005
- 9 J. C. Chanteloup, H. W. Yu, G. Bourdet *et al.*. Overview of the Lucia laser program: towards 100 joules, nanosecond pulses, kW averaged power, based on ytterbium diode pumped solid state laser[C]. SPIE,2005, 5707: 105~116
- 10 H. W. Yu, G. Bourdet. Different cooling configurations for a high average power longitudinally diode-pumped Yb : YAG amplifier[J]. Appl. Opt., 2006, 45(24):6205~6211
- 11 J. Hein, S. Podleska, M. Siebold *et al.*. Diode-pumped chirped pulse amplification to the joule level[J]. *Appl. Phys. B*, 2004, 79: 419~422
- 12 Duan Wentao, Jiang Dongbin, Jiang Xuejun *et al.*. High power laser diode arrays end-pumped efficient coupling system [J]. *Chinese J. Lasers*, 2009, **36**(1):51~55 段文涛,蒋东镔,蒋学军等. 高效大功率 LD 阵列端面抽运耦合 系统[J]. 中国激光,2009, **36**(1):51~55

光

- Duan Wentao, Xu Meijian, Yu Haiwu *et al.*. Experiments on output scaling and amplification of a novel active-mirror laser[J]. *Chinese J. Lasers*, 2007, 34(10):1367~1370 段文涛,徐美健,於海武等. 一种新型有源镜激光器定标放大实 验[J]. 中国激光, 2007, 34(10):1367~1370
- 14 Xu Meijian, Yu Haiwu, Duan Wentao et al.. Output

performance of solid state heat capacity laser with active-mirror and dichromatic coatings[J]. *High Power Laser and Particle Beams*, 2007, **19**(11):1775~1778

徐美健,於海武,段文涛等.双色膜 V 形有源镜结构的固体热 容激光器输出特性[J]. 强激光与粒子束,2007,19(11):1775~ 1778